"When the going gets weird, the weird turn pro."
Hunter S. Thompson
Featured Publications
Borcik, C., DeZonia, B., et al. OPTO: Automated Optimization for Solid-State NMR Spectroscopy. J Am Chem Soc 4, 3293-3303 (2025). https://doi.org/10.1021/jacs.4c13295
Barclay, A., Milchberg, M., Warmuth, O., et al. Automated fibril structure calculations in Xplor-NIH. Structure 33, 381-388 (2024). https://doi.org/10.1016/j.str.2024.11.011
Dhavale, D., Barclay, A., et al. Structure of alpha-synuclein fibrils derived from human Lewy body dementia tissue. Nat Commun 15, 2750 (2024). https://doi.org/10.1038/s41467-024-46832-5
Lewandowska, A., Soutar, C.P., Greenwood, A.I. et al. Fungicidal amphotericin B sponges are assemblies of staggered asymmetric homodimers encasing large void volumes. Nat Struct Mol Biol 28, 972–981 (2021). https://doi.org/10.1038/s41594-021-00685-4
Tuttle, M., Comellas, G., Nieuwkoop, A. et al. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat Struct Mol Biol 23, 409–415 (2016). https://doi.org/10.1038/nsmb.3194
Stephen A. Davis, et al. C3-OH of Amphotericin B Plays an Important Role in Ion Conductance . J Am Chem Soc 137 (48), 15102-15104 (2015). https://doi.org/10.1021/jacs.5b05766
Anderson, T., Clay, M., et al. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol 10, 400–406 (2014). https://doi.org/10.1038/nchembio.1496
Gemma Comellas, et al. Structural intermediates during α-synuclein fibrillogenesis on phospholipid vesicles. J Am Chem Soc 134 (11), 5090-5099 (2012). https://doi.org/10.1021/ja209019s
PubMed Publication Search
https://pubmed.ncbi.nlm.nih.gov/?term=chad+rienstra&sort=date